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Abstract 

Rapidly expanding human activities have profoundly affected various biophysical and biogeochemical processes of 
the Earth system over a broad range of scales, and freshwater systems are now amongst the most extensively altered 
ecosystems. In this study, we examine the human-induced changes in land surface water and energy balances and 
the associated climate impacts using a coupled hydrological–climate model framework which also simulates the 
impacts of human activities on the water cycle. We present three sets of analyses using the results from two model 
versions—one with and the other without considering human activities; both versions are run in offline and coupled 
mode resulting in a series of four experiments in total. First, we examine climate and human-induced changes in 
regional water balance focusing on the widely debated issue of the desiccation of the Aral Sea in central Asia. Then, 
we discuss the changes in surface temperature as a result of changes in land surface energy balance due to irrigation 
over global and regional scales. Finally, we examine the global and regional climate impacts of increased atmospheric 
water vapor content due to irrigation. Results indicate that the direct anthropogenic alteration of river flow in the 
Aral Sea basin resulted in the loss of ~510 km3 of water during the latter half of the twentieth century which explains 
about half of the total loss of water from the sea. Results of irrigation-induced changes in surface energy balance 
suggest a significant surface cooling of up to 3.3 K over 1° grids in highly irrigated areas but a negligible change 
in land surface temperature when averaged over sufficiently large global regions. Results from the coupled model 
indicate a substantial change in 2 m air temperature and outgoing longwave radiation due to irrigation, highlighting 
the non-local (regional and global) implications of irrigation. These results provide important insights on the direct 
human alteration of land surface water and energy balances, highlighting the need to incorporate human activities 
such as irrigation into the framework of global climate models and Earth system models for better prediction of future 
changes under increasing human influence and continuing global climate change.
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Background
Rapidly expanding human activities have profoundly 
affected various biophysical and biogeochemical pro-
cesses of the Earth system over a broad range of scales, 
and freshwater systems are now amongst the most exten-
sively altered ecosystems (Postel et  al. 1996; Vitousek 
et  al. 1997; Nilsson et  al. 2005; Carpenter et  al. 2011). 
Human management of land and water resources began 
with the advent of settled agriculture ~10,000 years ago 

(Marsh and Lowenthal 1965; Postel 1999), but the perva-
sive alteration of freshwater systems through flow regula-
tion and large-scale water diversion began to accelerate 
rapidly during the twentieth century as a result of prolif-
eration in dam construction and widespread agricultural 
expansion to fulfill the growing needs for water, food, 
and energy for the global population that quadrupled in 
the past 100 years. These large-scale water management 
practices have brought enormous benefits to our socie-
ties but also resulted in an unprecedented scale of nega-
tive environmental consequences (Vitousek et  al. 1997; 
Postel et al. 1996; Nilsson et al. 2005; Micklin 2007; Rock-
ström et  al. 2009; Carpenter et  al. 2011; Newbold et  al. 
2016). Today, it has become clear that mankind, through 
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its actions, is conducting a planetary-scale experiment 
potentially pushing many Earth system processes to their 
tipping points (Newbold et  al. 2016; Rockström et  al. 
2009).

Mounting evidences from ground- and satellite-based 
observations indicate that the human footprint on fresh-
water and ecological systems is now widespread across 
the planet and is widening at an alarming rate. These evi-
dences have already shown that (1) most of the large river 
systems around the world have been heavily fragmented 
(Dynesius and Nilsson 1994; Vörösmarty et  al. 1997; 
Gleick 2003; Nilsson et al. 2005); (2) more than 40% of the 
global land surface has been modified by human-induced 
land cover change (Ramankutty et al. 2008; Pielke 2005; 
Foley et al. 2005); (3) groundwater storages in the world’s 
largest aquifer systems are depleting at an alarming rate 
due to excessive pumping (Rodell et al. 2009; Wada et al. 
2010; Pokhrel et al. 2012a, 2015; Scanlon et al. 2012; Kon-
ikow 2013; Long et al. 2013; Voss et al. 2013; Döll et al. 
2014; Famiglietti 2014; Joodaki et al. 2014); and (4) some 
of the world’s largest inland water bodies such as the 
Aral Sea are fast disappearing due to human alteration of 
water balance within their drainage areas (Micklin 1988, 
2007; Lemoalle 2004; AghaKouchak et  al. 2015). Today, 
as we enter into a new geological epoch termed as the 
“Anthropocene” (Crutzen 2002; Lewis and Maslin 2015), 
human forces have become so profound and pervasive 
that they rival other climatic factors in driving terrestrial 
water systems in many regions (Sanderson et  al. 2002; 
Steffen et  al. 2007; Rockström et  al. 2009; Vörösmarty 
et  al. 2010; Wagener et  al. 2010; Carpenter et  al. 2011). 
Because of such widespread human perturbations of nat-
ural systems, it is not meaningful anymore to study fresh-
water systems and their interactions with climate without 
considering human activities (Oki and Kanae 2006).

Decades of ground-based observations have enabled 
us to better understand the changes in the Earth’s water 
cycle over varying spatial and temporal scales. In recent 
decades, satellite observations, such as those from the 
Gravity Recovery and Climate Experiment (GRACE) sat-
ellite mission (Tapley et al. 2004), have further enabled us 
to better monitor the changing surface and groundwater 
systems especially in relation to the changing climate and 
growing human interventions. However, the large obser-
vational data synthesis alone is not sufficient to attribut-
ing the observed changes to natural climatic and human 
factors and thereof to realistically predict future changes 
in the rapidly changing environment where stationarity 
is suggested to be non-existent (Milly et al. 2008). These 
issues call for the urgent need to develop new tools that 
can be used to accurately reproduce the past and real-
istically predict the future. Hydrological models are the 
predictive tools used to study the changes in different 

branches of the terrestrial water cycle. Some of these 
models, referred to as the land surface models (LSMs), 
are also used to represent land surface hydrology and 
simulate lower boundary conditions in general circula-
tion models (GCMs) and Earth system models (ESMs). 
Both the hydrological models and LSMs have been used 
for a wide ranging studies of the water cycle over the 
past as well as for future projection of water resources 
availability (Arnell 1999; Oki and Kanae 2006; Döll 
2009; Hanasaki et al. 2013; Wada et al. 2013; Haddeland 
et al. 2014; Schewe et al. 2014; Gosling and Arnell 2016; 
Pokhrel et al. 2014). Over the past several decades, these 
models have been advanced through intensive improve-
ments of schemes representing vegetation, soil moisture, 
and groundwater processes (Sellers et al. 1997; Lawrence 
et al. 2011), but most of these sophistications are focused 
on simulating the natural water cycle, and relatively little 
progress has been made in modeling human impacts. In 
particular, while noteworthy progress has been made in 
representing human factors in global hydrological mod-
els (GHMs) (Haddeland et al. 2011) designed for offline 
water resource assessment, most current-generation 
LSMs still lack the representation of human factors, 
meaning that most GCMs and ESMs currently lack the 
representation of human factors. Recent years have seen 
increased attention both from hydrologic and climate 
modeling communities in incorporating human activities 
into LSMs and GCMs but some challenges and oppor-
tunities still remain (Pokhrel et  al. 2016; Nazemi and 
Wheater 2015a, b).

In this study, we contribute to the discussion on how 
human land–water management activities (i.e., irrigation, 
flow regulation, and groundwater pumping) are affecting 
freshwater systems and climate over large scales. We sub-
sequently highlight the importance of representing these 
human activities in global GCMs and ESMs to better 
simulate the coupled natural-human systems in the face 
of growing human influence on freshwater systems and 
ongoing climate change. The primary goal of the paper 
is to examine the large-scale alterations of land surface 
water and energy balances due to human activities and 
to investigate the resulting climate impacts and feed-
back. We present our analysis at both global and regional 
scales because while the human-induced changes in 
surface water balance affect the water cycle primarily at 
local to regional scales, the resulting changes in surface 
energy balance can affect the climate system over a vary-
ing range of spatial scales. For the water balance analysis, 
we present a regional case study of the Aral Sea in central 
Asia. A number of observation-based studies (e.g., Mick-
lin 1988, 2007; Small et al. 2001) have reported that the 
large alteration of river flows in the Aral Sea basin was 
the primary reason for the rapid desiccation of the sea 
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during the last several decades. However, to the authors’ 
knowledge, hydrological model simulations have been 
rarely used to mechanistically examine the natural and 
anthropogenic causes of changes in inflows to the sea. As 
such, the attribution of the observed changes in Aral Sea 
inflow to natural and anthropogenic factors remains rela-
tively unexplored. For the analysis of surface energy bal-
ance, we present both regional and global results because 
the irrigation-induced changes in surface energy balance 
have been suggested to affect the climate system at local, 
regional, as well as global scales (Sacks et al. 2009).

We use the results from a coupled hydrological–cli-
mate model framework developed by linking a global 
LSM—that accounts for human land–water management 
activities—with its parent GCM to examine the extent of 
direct human influence on freshwater systems and cli-
mate over large scales. To attribute the observed changes 
in water and energy balances to human and climate fac-
tors, we first use two offline LSM experiments: one with 
and the other without human activities. Then, the climate 
impacts are examined by using the coupled model (i.e., by 
coupling the LSM with its parent GCM). Again, we con-
duct two experiments: one with and the other without 
human activities, resulting in a total of four experiments 
(i.e., two offline and two online). Specifically, we investi-
gate (1) how the increased use of water for irrigation in 
the Aral Sea basin contributed to the anthropogenic des-
iccation of the sea during the latter half of the twentieth 
century, which is sometimes referred to as “one of the 
very greatest ecological problems” of the twentieth cen-
tury (Micklin 1988); (2) the impacts of irrigation on land 
surface energy balance over regional scales; and (3) the 
global and regional climate impacts of irrigation-induced 
increase in atmospheric water vapor content. In the rest 
of this paper, we first describe the model in “Model, data, 
and experimental settings,” present research findings in 
“Results and discussion,” and provide concluding remarks 
in “Summary and conclusions.”

Model, data, and experimental settings
The model used in the study is HiGW-MAT (Pokhrel 
et  al. 2015), which was developed by incorporating 
human impact (Hi) modules (e.g., reservoir operation, 
crop growth, irrigation, and water withdrawal for domes-
tic, industrial, and agricultural purposes) and groundwa-
ter (GW) dynamics and pumping schemes into a global 
LSM called the minimal advanced treatments of surface 
interaction and runoff (MATSIRO) (Takata et  al. 2003). 
MATSIRO is an LSM developed to compute biophysi-
cal exchanges in the atmospheric GCM (AGCM) called 
MIROC (the Model for Interdisciplinary Research on 
Climate) (Hasumi and Emori 2004). MATSIRO estimates 
the exchange of energy, water vapor, and momentum 

between the land surface and the atmosphere on a physi-
cal basis by taking into account the effects of vegetation 
on surface energy balance using a multilayer canopy 
model (Watanabe 1994) and a photosynthesis–stoma-
tal conductance model (Collatz et al. 1991). The vertical 
movement of soil moisture is estimated by numerically 
solving the Richards equation (Richards 1931), and the 
land surface hydrological processes are represented 
by employing a simplified version of the TOPMODEL 
(Beven and Kirkby 1979; Stieglitz et al. 1997).

Since river routing and human land–water manage-
ment activities were not considered in the original MAT-
SIRO, we incorporated a global river routing scheme 
(Oki and Sud 1998) and various schemes representing 
human land–water management practices (e.g., reser-
voir operation, crop growth, irrigation, water withdrawal, 
and environmental flow requirements) into the model in 
our previous studies (Pokhrel et al. 2012a, b). Further, the 
soil model of MATSIRO was improved by representing a 
prognostic water table dynamics scheme (Yeh and Elta-
hir 2005) to explicitly simulate the vertical flux exchange 
between saturated and unsaturated soil zones (Koirala 
et al. 2014). In our recent study (Pokhrel et al. 2015), we 
further enhanced the model by representing groundwa-
ter pumping scheme to explicitly simulate groundwater 
withdrawal and recharge, enabling us to estimate ground-
water withdrawal and depletion within the model and 
without using any auxiliary information. The latest ver-
sion of the model (i.e., HiGW-MAT) thus simulates the 
flow and storage of water globally, taking into account 
human water use for various purposes and its influence 
on surface water and energy balance over global and con-
tinental scales.

In this study, we use HiGW-MAT for both offline 
(forced by observation-based meteorological data) and 
online (coupled with MIROC AGCM version 3.2) simu-
lations. We carry out two sets of simulations—one by 
turning the human impact schemes off and the other 
by turning them on—in both offline and online modes, 
resulting in a set of four simulations in total. We refer 
to the former setting as natural setting (hereafter NAT-
Offline and NAT-Online experiments) and the latter 
as human impact setting (hereafter HI-Offline and HI-
Online experiments). Forcing data for offline simula-
tions are taken from two different sources considering 
their temporal coverage for different analyses. For the 
historical (1951–2000) simulations used to examine the 
Aral Sea inflow, we use the NCC forcing data (Ngo-Duc 
et al. 2005), and for the simulations used to examine irri-
gation-induced alteration of surface energy balance for 
the period 1998–2010, we used the data from Kim et al. 
(2009) because this period is not covered by NCC data. 
We use these two particular forcing datasets because 
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they have been used in our previous studies that vali-
dated various model components used here (Pokhrel 
et al. 2012a, b, 2015). The uncertainties arising from the 
use of different forcing datasets, especially precipita-
tion, have also been discussed in our previous studies 
(Pokhrel et al. 2012a, b). All other model parameters and 
data for human activity modules are identical to those 
used by Pokhrel et  al. (2015). Grid-based and time-var-
ying (annual) irrigated areas for the entire simulation 
period are derived by using the Global Map of Irrigated 
Areas (GMIA) (Siebert et al. 2015) and the methodology 
described in Pokhrel et al. (2012b).

For online simulations, we couple HiGW-MAT with 
MIROC AGCM version 3.2 (Hasumi and Emori 2004) 
and dynamically simulate the land–atmosphere inter-
actions including the land disturbance due to human 
activities such as irrigation and groundwater use. The 
online simulations are initialized with the soil moisture 
states from the offline simulations. Online simulations 
are conducted for the period 1998–2010, and all model 
parameters related to land surface hydrology and human 
activities are identical to those used in offline simula-
tions. While the offline simulations are performed at 
the spatial resolution of 1° × 1°, the online experiments 
are conducted at T42 resolution (~2.81°) with 20 verti-
cal sigma levels. The spatial resolutions used for both 
the offline and online simulations are typical for global 
models and are fairly adequate to capture the large-scale 
spatial patterns and long-term trends discussed in the 
present study. The LSM is run at an hourly interval, and 
the output is saved on a daily basis.

The offline model results from both the original MAT-
SIRO and the integrated HiGW-MAT models have been 
extensively validated using ground- and satellite-based 
observations of various hydrologic fluxes and stores in 
our previous studies (Koirala et  al. 2014; Pokhrel et  al. 
2012a, b, 2015). In particular, river discharge and terres-
trial water storage (TWS) variations, irrigation water use, 
and groundwater withdrawals and depletion have been 
evaluated over varying spatial domains and temporal 
scales. In this study, we briefly revisit the evaluation over 
the Aral Sea basin. We use the observed river discharge 
from the Global Runoff Data Center (GRDC) for the 
evaluation of river discharge, and the TWS data derived 
from the GRACE satellite mission (Tapley et al. 2004) are 
used to evaluate the simulated TWS variations over the 
Aral Sea basin.

Results and discussion
We present three sets of results. First, we analyze the 
human-induced changes in water balance for the Aral Sea 
region. We focus on this region because, to the authors’ 
knowledge, very few studies have used model results to 

mechanistically explain the natural and human-induced 
changes in river flows that caused the desiccation of the 
sea over the past several decades. Second, we present 
the results from offline simulations at both regional and 
global scales to examine the changes in surface energy 
balance due to irrigation. Finally, we use online model 
simulations to detect the irrigation-induced climate 
impacts, again at both regional and global scales.

Human alteration of water balance: the case of Aral Sea
We evaluate the simulated streamflow in the river basins 
draining to the Aral Sea and the changes in TWS over the 
entire Aral Sea basin with the observations from GRDC 
and GRACE satellite mission, respectively. The Aral Sea 
is a large terminal saline lake located among the deserts 
of Central Asia. It drains a total area of ~1.8 million km2 
spread across seven nations: Uzbekistan, Turkmenistan, 
Kazakhstan, Afghanistan, Tajikistan, Pakistan, and Iran 
(Micklin 2007). The main source of water to the sea is the 
discharge of the Syr Darya and Amu Darya river basins, 
and the sea has no surface outflow. After mid-twentieth 
century, agricultural diversions of river water increased 
substantially throughout the Aral Sea drainage area, result-
ing in a net loss of water from the sea owing to increased 
evapotranspiration and groundwater recharge (Micklin 
1988; Small et al. 2001). As a result of reduced inflow, the 
net water balance of the sea became negative after 1960 
(Small et al. 2001); it has been suggested that the lake water 
level has fallen by 23 m, resulting in surface area shrinkage 
by ~74% and reduction in volume by ~ 90% during the lat-
ter half of the twentieth century (Micklin 2007).

Figure  1 shows the comparison of simulated (HI-
Offline) and observed total annual discharge from the 
Amu Darya and Syr Darya river basins, which are the 
major contributors of surface inflow to the Aral Sea. It 
is evident from the figure that the model captures the 
long-term trend of annual discharge fairly well with good 

Fig. 1 Comparison of the combined annual river discharge from 
Amu Darya and Syr Darya rivers at Kerki and Tyumen Aryk sta-
tions, respectively, from the model (blue) and observations (black). 
Observed data are shown only for the period available
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agreement for most years with certain overestimations 
during the late 1970s and early 1980s; results for the sub-
sequent years could not be evaluated owing to the lack 
of observations in GRDC database. The relatively smaller 
declining trend in the simulated flows compared to the 
trend in observations can be attributed primarily to two 
factors: the uncertainties in forcing data, especially pre-
cipitation, and uncertainties in human impact simula-
tions, especially those arising from the uncertainties in 
irrigation practices and irrigated areas. Water withdraw-
als and irrigation have been found to significantly alter 
the river flow and trigger off a considerable decrease 
(more than %10 in some regions) in long-term average 
annual river discharge (Döll et al. 2009). Further, the irri-
gation system in the Aral Sea basin is dominated by fur-
rows with relatively lower efficiency compared to modern 
practices (Micklin 2014). Therefore, the lack of detailed 
irrigation parameterization in the irrigation schemes 
used in global LSMs such as HiGW-MAT can cause such 
discrepancies between the observed and simulated river 
flows. Despite certain differences between model simu-
lations and observations, we consider the use of simu-
lated flows to be acceptable to assess irrigation-induced 
changes in surface water balance because any biases in 
the long-term trend will have similar magnitudes and 
hence the difference between two simulations (with and 
without human impacts) will not be significantly affected. 
It should also be noted that the results presented in Fig. 1 
do not represent the exact volume of Aral Sea inflow 
because the gaging stations in both rivers are located 
substantially in the upstream of the Aral Sea shore; the 
flow in the downstream may increase due to addition of 
local runoff or may decrease due to evaporation from 
wetlands, infiltration into groundwater, and/or added 
human water use along its course to the sea (Small et al. 
2001). Indeed, the long-term combined mean annual 
flow at the gaging stations in the two rivers both from 
observations (67 km3/year) and model (83 km3/year) dif-
fer significantly from the Aral Sea inflow reported by var-
ious previous studies (e.g., Raskin et al. 1992; Small et al. 
1999; Micklin 2007, 2010).

To add further confidence to our model simulations, 
we compare the variations of TWS from the HI-Offline 
experiment with the TWS variations derived from the 
GRACE satellite mission. Figure  2 presents the com-
parison of the seasonal cycle of simulated TWS anom-
aly averaged over the combined area of the Amu Darya 
and Syr Darya river basins with GRACE data (Level-3, 
Release-5). Results indicate that the model well cap-
tures the seasonal dynamics of the GRACE-detected 
TWS variations over the 2003–2010 period. In Fig. 2, the 
individual TWS components from model simulations, 
namely river water, soil moisture, and groundwater, are 

also shown. It is evident that the model tends to overes-
timate TWS amplitude compared with GRACE but it is 
also clear that the seasonal dynamics of TWS variations 
is simulated well by the model, which adds confidence to 
the results of our offline simulations.

Next, we examine the changes in long-term inflow 
to the Aral Sea due to human-induced alteration of 
water balance in the two river basins. An early study 
by Micklin (1988) suggested that, under natural condi-
tions,  ~111  km3/year of surface water would be gener-
ated over the Aral Sea basin of which about half reaches 
the sea because of losses such as through evapotranspira-
tion and infiltration within the drainage area. The study 
also suggested that ~40 km3/year of flow reached the sea 
during 1960s. Other studies have reported a larger inflow. 
For example, Raskin et al. (1992) suggested that the aver-
age surface runoff from the Aral Sea basin is ~120 km3/
year under natural conditions. Small et  al. (1999) com-
pared the model results of 162  km3/year with the 
observed inflow of ~110 km3/year for 1988–1993 period. 
Similarly, Shibuo et al. (2007) compared their simulated 
inflow of 77 and 16 km3/year for 1901–1950 and 1983–
2002 periods, respectively, with the reported values of 71 
and 12  km3/year. More detailed studies based on water 
balance using observational synthesis over decades sug-
gest a range of decadal inflows from 55 to 4 km3/year for 
different periods from 1910 to 2010 (Micklin 2007, 2010).

Despite the varying estimates of the inflow to the 
sea, the net change in sea volume over the past several 

Fig. 2 Comparison of simulated terrestrial water storage (TWS) 
anomaly with GRACE-based TWS for the combined area of Amu 
Darya and Syr Darya river basins, averaged for the period 2003–2010. 
SW, SM, and GW denote the contributions from surface water, soil 
moisture (in the vadose zone), and groundwater (below the water 
table) to the simulated total TWS (red line). The GRACE data are shown 
as the mean of the products from three processing centers, namely 
Center for Space Research at University of Texas, Austin (CSR), Jet 
Propulsion Laboratory (JPL), and Geoforschungs Zentrum Potsdam 
(GFZ), with the error bars showing the range of variations between 
the three products
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decades is relatively accurately known; it has been esti-
mated that the sea amounted to  ~1089  km3 during the 
1960s but reduced to  ~108 and  ~84  km3 in 2006 and 
2009, respectively, resulting in the net loss of ~1000 km3 
over about four decades (Micklin 2007, 2010). The 
observed desiccation of the sea is believed to be a conse-
quence of a combination of climatic and anthropogenic 
changes including the reduction in inflow from rivers, 
changes in regional climate and lake water balance (i.e., 
precipitation–evaporation), and alteration of groundwa-
ter flows to and from the sea. But it has been suggested 
that the primary cause is the reduction in river discharge 
to the sea due to increased human water consumption 
in the Aral Sea basin to support expanding agricultural 
activities, especially to increase the production of rice 
and cotton (Micklin 2007). Various aforementioned stud-
ies have often used the observed inflow over long terms 
to portray a picture of the desiccation of the sea, and 

some model-based studies have also studied the changes 
in regional climate and lake water balance over certain 
period of time (Small et  al. 1999, 2001; Shibuo et  al. 
2007); however, what remains unaddressed is the attri-
bution of the reported changes in inflow to natural and 
anthropogenic causes which can be done only through a 
comparative analysis of model results with and without 
considering human factors. Here, we directly address this 
issue by using the 50-year model experiment carried out 
by turning human factors on and off.

Figure 3a depicts the anomaly of combined inflow from 
Amu Darya and Syr Darya rivers into the Aral Sea (at the 
inlet to the sea) from offline simulations with (HI-Offline) 
and without (NAT-Offline) human activities. It is obvious 
from the figure that, even under natural conditions, the 
inflow to the sea was substantially lower than the long-
term mean during late 1950s, early 1960s, 1970s, and 
late 1990s. These results imply that the changes in inflow 

a

b

Fig. 3 Anomaly of the inflow to the Aral Sea from two major river basins simulated by NAT-Offline and HI-Offline experiments (a), and the differ-
ence (NAT-Offline–HI-Offline) in annual flow volume between the results of two simulations (b). Results are shown as five year running mean. Note 
that the NAT-Offline and HI-Offline results in (a) have different climatological mean and that the results in (b) are the difference of the absolute flow 
values
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were not entirely due to human water use, even though 
the meteorological forcing data used in both offline simu-
lations could already include some effects of the anthro-
pogenic alteration of regional water balance. It is evident 
that the inflow under both simulations was high during 
1952–1957, decreased substantially during 1960–1962, 
attained its highest value in 1969 as a results of higher 
precipitation and lower temperatures as also suggested 
by Shibuo et  al. (2007), and remained consistently low 
from 1973 onwards.

Figure 3b displays the difference between inflows from 
the two model runs. It is obvious that the human water 
use resulted in substantial inflow reduction with an 
increasing trend from 1950s to mid-1970s; the largest dif-
ference of ~15 km3/year can be observed during the mid-
1970s. The temporal patterns in the difference shown in 
Fig.  3b reflect the changes in irrigation water demands 
over time, caused primarily by two factors: changes in 
irrigated areas and climate conditions. During the 1950s, 
low irrigated areas and wet climate conditions resulted 
in a relatively small difference between the two simula-
tions. The difference increased substantially until the 
1970s, caused by the monotonous rise in irrigated areas 
during this period and the relatively dry climate condi-
tions in some years (negative flow anomalies in Fig. 3a). 
The difference peaked around mid-1970s and remained 
relatively stable with certain inter-annual fluctuations, 
mostly driven by climate variability. It is important to 
note that wetter soil conditions in some years can be car-
ried over to the subsequent years resulting in less irriga-
tive demands. The cumulative difference over the 50-year 
period is  ~510  km3, which suggests that, based on the 
model simulations, almost half of the change in sea vol-
ume can be attributed to direct anthropogenic altera-
tion of river flow. Certainly, as discussed earlier, climate 
change and variability, which could be both natural and 
human-induced, also contributed largely to the reduction 
in inflow to the Aral Sea. Changes in lake evaporation 
and groundwater inflow/outflow may also have partially 
contributed to the overall water balance which are not 
considered in our study. Moreover, our results are from 
an offline model which does not take into account the 
interactions and feedback among land and atmospheric 
drivers of water cycle change. A more comprehensive 
analysis using a coupled land–lake–atmosphere model 
that also considers human land–water management is 
needed to fully attribute the observed changes to various 
climatic and anthropogenic factors.

Irrigation‑induced changes in surface energy balance
The anthropogenic alterations of river flows discussed 
in the previous section have important implications on 
land surface energy balance. In particular, water used for 

irrigation creates wetter soil conditions, fundamentally 
enhancing evapotranspiration which in turn transforms 
the surface energy balance causing surface cooling (Kue-
ppers et al. 2007). In offline simulations, these alterations 
are manifested as changes in latent and sensible heat 
fluxes accompanied by reduced land surface or skin tem-
perature. Such impacts are not highly pronounced over 
the entire Aral Sea basin (Fig. 4) because in most of the 
region only a relatively small fraction of the model grid 
cells is irrigated (Fig. 5). Therefore, we focus the discus-
sion here on other global regions that are extensively irri-
gated, and can have potential impacts on global climate 
system.

Figure  4 displays the grid-averaged changes in annual 
mean land surface skin temperature in response to 
increased latent heat flux due to irrigation. Decrease in 
mean annual surface temperature averaged over all irri-
gated grid cells is rather small (~0.04  K or  ~1.2%), but 
the changes are particularly pronounced in the highly 
irrigated areas [Fig. 5; data source: Siebert et  al. (2015)] 
and during the growing seasons. Surface cooling is not 
highly pronounced in the modestly irrigated areas in 
South America, Australia, Europe, and the southern part 
of Africa, where irrigation causes only a small change in 
surface energy balance. In Southeast Asia and the eastern 
part of China, where the model simulates large amounts 
of irrigation water use (Pokhrel et  al. 2012a), surface 
energy balance is not affected by irrigation, because these 
regions are characterized by humid climate and energy-
limited regime where increase in soil water content does 
not necessarily increase evapotranspiration due to energy 
limitation. In addition, the major crop grown in many of 
these regions is rice and irrigation is applied to maintain 
soil moisture at near full saturation during the growing 
season, which often results in immediate increase in sur-
face runoff during heavy rainfall over flooded rice pad-
dies. As such, only a small percentage of irrigation water 
is actually consumed by crops and the rest is discharged 
back to rivers as return flow.

In highly irrigated grid cells in parts of northwest India 
and western US, surface cooling of up to 3.3 K is found 
during growing season (Fig. 4b, c). The actual change in 
surface temperature over the irrigated regions could be 
even larger because the results shown are the grid-aver-
age values. Such large surface cooling simulated by the 
model is accompanied by significant increase in latent 
heat flux of up to 50  W/m2 during the growing season 
as reported in our previous study (Pokhrel et al. 2012a). 
These results, which are in line with previous studies 
(e.g., Haddeland et al. 2006), suggest that the irrigation-
induced changes in land surface energy balance when 
averaged over large domains (e.g., large global basins) 
could be very small but are highly pronounced within 
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and around the highly irrigated regions. Such alteration 
of surface energy balance due to irrigation can potentially 
alter the climate system at varying scales by making the 
lower atmosphere cooler and supplying additional mois-
ture into the atmosphere, which we discuss in the next 
section.

Climate impacts of irrigation
Finally, we examine the impacts of irrigation on regional 
and global climate using the results from two online sim-
ulations: one with and the other without human activi-
ties. A number of studies have examined the impacts of 
irrigation-induced changes in surface energy balance 
on regional and global climate (e.g., Boucher et al. 2004; 
Kueppers et al. 2007; Sacks et al. 2009; Puma and Cook 
2010; Sorooshian et  al. 2011; Lo and Famiglietti 2013). 

These studies have consistently shown that irrigation 
can exert significant regional as well as global climate 
impacts; however, there are large disagreements in the 
quantification of the magnitude of these impacts among 
different models (Sorooshian et  al. 2012). The disagree-
ments among models can partly be attributed to the use 
of different irrigation schemes, most of which are rather 
simplistic and suffer from large uncertainties in esti-
mating the irrigation amount itself (Pokhrel et al. 2016). 
Here, we expand on these existing studies by presenting 
new results from a coupled climate model that dynami-
cally simulates the irrigation impacts on climate system 
by explicitly simulating irrigation demands within the 
model, also taking into account crop growth dynamics as 
well as the source of irrigation water (Pokhrel et al. 2012a, 
2015). Thus, the model fully accounts for both the natural 

Fig. 4 Changes in grid-averaged annual mean land surface skin temperature due to irrigation (a); June–August (JJA) average over the continental 
US (b); and March–May (MAM) mean over the Indian sub-continent and central Asia including the Aral Sea region (c). Results shown are the differ-
ences between NAT-Offline and HI-Offline simulations. While color represents ocean or land without irrigated areas. The black star in (c) locates the 
Aral Sea
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and human-induced terrestrial water balance within the 
climate model framework, making it one of the first of its 
kind.

Figure  6 shows the difference in 2  m air temperature 
from the NAT-Online and HI-Online experiments, aver-
aged over the period 1998–2010 and for June–August 
(JJA) during which the temperature changes were found 
most profound among all seasons. The figure provides 
the following insights. First, it is evident that the cou-
pled model simulates a decrease in 2 m air temperature 
over the highly irrigated regions (shown in Fig.  5) such 
as the northwestern India and parts of Pakistan as well as 
the central US, which coincide with the regions of large 

irrigation-induced surface cooling in our offline simula-
tions (Fig.  4). Large negative temperature differences of 
up to −3 K can also be seen in eastern China, and parts 
of Europe which also include irrigated areas. The dotted 
areas in Fig.  6 represent the grid cells that satisfy 95% 
statistical significance in Student’s t test. Overall, these 
results are generally consistent with the findings of Sacks 
et al. (2009).

Second, substantial cooling can be observed even in 
areas with little or no irrigation, including the north-
ern and northeastern Africa and northern Canada. And 
third, warming can be observed in regions including 
the mid-to-eastern areas in northern Eurasia, southern 

Fig. 5 Irrigated area fraction at 1° grids. White color represents either ocean or land not equipped for irrigation. Data source: Siebert et al. (2015). 
While color represents ocean or land without irrigated areas

Fig. 6 Irrigation-induced changes in simulated 2 m air temperature, i.e., the difference between NAT-Online and HI-Online experiments. The dotted 
areas represent the grid cells that satisfy 95% statistical significance in Student’s t test



Page 10 of 13Pokhrel et al. Geosci. Lett.  (2017) 4:10 

Africa, and central America. These results of varying 
degree of cooling and warming in regions within and 
beyond the irrigated regions suggest that the climate 
impacts of irrigation can be driven by non-local pro-
cesses. The relatively weak signal (Fig. 6) in some of the 
highly irrigated grid cells around southern California 
(Figs. 4, 5) also suggests that the irrigation-induced cool-
ing in the grid cell size of atmospheric models is highly 
non-local and is not always correlated directly with the 
surface cooling in offline simulations. Further, as sug-
gested by Sacks et  al. (2009), irrigation-induced evapo-
rative cooling in one region should be offset by warming 
from the release of latent heat in other parts of the atmos-
phere, which implies that indirect effects such as chang-
ing cloud cover, and the accompanying changes in solar 
radiation, could be more important over larger scales and 
beyond irrigated areas. To assess such indirect effects, 
here we finally examine the changes in outgoing long-
wave radiation (OLR). The decrease in OLR is a result 
of lower surface temperatures and increased cloud con-
tent as a consequence of increased water vapor content 
in the atmosphere. Thus, the increased cloud cover adds 
a positive feedback on the reduction in OLR due to sur-
face cooling by irrigation. As seen in Fig. 7, in the highly 
irrigated regions including the northwestern India, Paki-
stan, eastern China, and central US, thicker or frequent 
clouds and cooler 2  m air temperature (Fig.  6) due to 
increased water vapor from irrigated areas result in sig-
nificant reduction in OLR. Similar to the changes in 2 m 
air temperature, regions away from irrigated areas such 
as the mid-to-eastern area on northern Eurasia experi-
ence increase in OLR as a result of increase in 2  m air 
temperature and reduction in cloud cover.

Summary and conclusions
In this study, we contribute to the discussion on how 
human land–water management activities (e.g., irrigation, 
flow regulation, and groundwater pumping) are affect-
ing the freshwater system and climate over large scales. 
We subsequently highlight the importance of represent-
ing these human activities in global climate models and 
Earth system models to better simulate the coupled nat-
ural-human systems in the face of growing human influ-
ence on freshwater system and ongoing climate change. 
Results from a coupled hydrological–climate model 
framework developed by linking a global LSM—that 
accounts for human land–water management activities—
with its parent GCM are used to examine the changes in 
surface water and energy balances and their impacts on 
regional and global climate. First, the results from the 
offline model are used to examine the climate and human-
induced changes in the hydrology of the Aral Sea basin in 
central Asia and the associated impacts on the reduction 
in the volume of the sea over the latter half of the twenti-
eth century. Simulated results of river discharge and ter-
restrial water storage (TWS) variations are evaluated with 
the observations from the GRDC and the GRACE satel-
lite mission, respectively. Simulated river discharge for 
the Amu Darya and Syr Darya river basins, which are the 
major contributors to the Aral Sea inflow, are then used 
to examine the climate and human-induced changes in 
inflow to the sea over long terms. Results indicate that the 
direct anthropogenic alteration of river flow in the Aral 
Sea basin resulted in the loss of ~510 km3 of water dur-
ing the latter half of the twentieth century which explains 
about half of the recorded loss of water from the sea. 
Results also suggest that the inflow to the sea decreased 

Fig. 7 Same as in Fig. 6 but for OLR outgoing longwave radiation
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over the analysis period even in the simulation without 
human activities, implying that the observed changes in 
the sea could partly be due to natural climate variability 
and trend. It is also found that the human-induced reduc-
tion in inflow to the sea changed over time, reflecting the 
changes in irrigation water demands caused by expand-
ing irrigated areas and changing climate conditions (both 
inter-annual as well as inter-decadal variabilities).

Second, we use the results from two offline simulations 
(with and without human impacts) to discuss the changes 
in surface temperature as a result of changes in land 
surface energy balance due to irrigation over global and 
regional scales. Results of irrigation-induced changes in 
surface energy balance suggest a significant surface cool-
ing of up to 3.3 K over 1° grids in highly irrigated areas 
but a negligible change in surface temperature when 
averaged over sufficiently large global regions. Finally, we 
use the results from coupled land surface–climate model 
to examine the impacts of irrigation on climate over large 
scales. It is found that irrigation-induced evaporative 
cooling of the surface and associated increase in water 
vapor in the atmosphere substantially reduced 2  m air 
temperature in the vicinity of the highly irrigated areas. 
Results also suggest that the irrigation impacts are non-
local causing substantial warming in regions far from 
irrigated regions. Further,  we use the results of changes 
in outgoing longwave radiation (OLR) to examine the 
impacts of changing cloud cover resulting from irrigated 
areas. Changes in OLR are consistent with the changes in 
2  m air temperature, suggesting substantial decrease in 
OLR within irrigated regions and substantial increase in 
regions beyond irrigated areas.

There are a number of factors that could have intro-
duced certain errors in our results. For example, the 
simulated irrigation water use and the resulting alteration 
of river flows are directly impacted by forcing data, espe-
cially precipitation and temperature, which could contain 
significant uncertainties in some regions. Moreover, the 
errors in the spatial extent as well as the temporal evolu-
tion of irrigated areas and the simplifications in modeling 
irrigation practices also add further uncertainties in the 
simulated irrigation water use. In addition, the simula-
tion of irrigation water demands in our online experi-
ments could have been affected by the potential biases 
in the climatology simulated by the AGCM. Address-
ing these issues will be important directions for future 
research. Despite some limitations, this study provides 
important insights on the direct human alteration of land 
surface water and energy balances over large regions. 
Our findings also call for the need to incorporate human 
land–water management activities in LSMs and integrate 
such LSMs into the framework of Earth system models 
for more accurate attribution of the observed changes to 

natural and human-induced causes and realistic predic-
tion of future changes under increasing human influence 
and continuing global climate change.
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